NATURAL SCIENCES DEPARTMENT HOSTOS COMMUNITY COLLEGE of THE CITY UNIVERSITY OF NEW YORK

SYLLABUS FOR GENERAL BIOLOGY I - BIO 210

4 credits. 3-hr. lecture/3-hr. lab/1-hr. recitation Pre/corequisites: ENG 1300 or ENG 1301; MAT 1622 (or exemption)

COURSE DESCRIPTION:

This course, the first of two courses in biological science, is intended for students preparing for careers in science. Lecture topics include basic properties of living organisms, metabolism, energy transformation, cellular reproduction, Mendelian genetics, and gene expression.

TEXTBOOK:	Biology by Neil A. (Campbell, Jane B. Reece (Ninth Edition) Benjamin
	Cummings. ISBN	9781256987284
www.aamahallhial		

www.campbellbiology.com

TEXT CHAPTERS PAGES SUBJECT AREAS 1. **EXPLORING LIFE** 1 2-27 2. THE CHEMISTRY OF LIFE The **Chemical Context of Life** 2 30-45 Water and the Fitness of the Environment 46-57 3 Carbon and the Molecular Diversity of Life 4 58-67 The Structure and Function of Macromolecules 5 68-91 3. THE CELL Tour of the Cell 6 94-124 Α Membrane **Structure and Function** 7 125-141 142-161 **Introduction to Metabolism** 8 **Cell Respiration: Harvesting Chemical Energy** 9 162-184 **Photosynthesis** 10 184-205 **Cell-Cell Communication** 11 206-227 The 228-245 Cell Cycle 12 4. **GENETICS** Meiosis and Sexual Life Cycles 13 248-261 Mendel and the Gene Idea 14 262-285 **Chromosomal Basis of Inheritance** The 15 286-305 The **Molecular Basis of Inheritance** 305-324 16 From Gene to Protein 17 325-350 Regulation of Gene Expression 18 351-380 381-395 Viruses 19 **Biotechnology** 20 396-425 Genes and their Evolution 21 426-449

<u>CHAPTER</u> 1.	INTRODUCTION: THEMES IN THE STUDY OF LIFE	<u>PAGES</u>
TT •4	Themes that Unify Biology	3
Unity	and Diversity of Life 12	
Scientific	Inquiry 18	
2.	THE CHEMICAL CONTEXT OF LIFE	
Chemical	Elements and Compounds 31	
	Structure of Atoms	32
	Chemical Bonds	38
Chemical	Reactions 42	
3.	WATER AND THE FITNESS OF THE ENVIRONMENT	
The	Effects of Water's Polarity 46	
Four	Emergent Properties of Water 47	
The	Dissociation of Water Molecules 52	
The	4. CARBON AND THE MOLECULAR DIVERSITY OF LIFE	
IIIC	Carbon Skalatons	60
	Functional Groups	63
	Tunctional Groups	05
	5. THE STRUCTURE AND FUNCTION OF MACROMOLECU	LES
	Polymer Principles 68	
	Carbohydrates – Fuel and Building Material	69
	Lipids – Diverse Hydrophobic Molecules	74
	Proteins – Many Structures, Many Functions	77
	Nucleic Acids – Informational Polymers	86
	6. A TOUR OF THE CELL	
	How We Study Cells	94
Prokaryoti	e and Eukaryotic Cells 98	
The	Nucleus and Ribosomes 102	
The	Endomembrane System 104	
Other	Membranous Organelles 109	
The	Cytoskeleton 112	
Cell	Surfaces and Junctions 118	
	7. MEMBRANE STRUCTURE AND FUNCTION	
Fluid	Mosaics 125	
Selective	Permeability 131	
Passive	Transport 132	
Active	Transport 135	
Bulk	Transport by Exocytosis and Endocytosis 138	
	8. INTRODUCTION TO METABOLISM 141	

	Matter Transformation and Laws of thermodynamics	142
Free-Energ	y 146	
ATP	and Coupling Reactions 149	
Enz	ymes and Metabolic Reactions 151	
Regulation	of Enzymatic Activity 157	
	9. CELLULAR RESPIRATION: HARVESTING CHEMICAL ENE	RGY
Catabolic	Pathways 162	
	Glycolysis 167	
The	Citric Acid Cycle 170	
Electron	Transport and ATP Synthesis 172	
Fermentatio	on 177	
Other	Metabolic Pathways 180	
	10. PHOTOSYNTHESIS	
Photosynthe	esis Converts Light into Food 186	
v	Light Reactions Convert Solar Energy into Chemical Energy	190
	The Calvin Cycle Converts CO ₂ to Sugar 198	
Alternativ	e Mechanisms of Carbon Fixation 200	
	11. CELL-CELL COMMUNICATION	
	External Signaling 206	
	Recention: Signal Molecules and Recentor Proteins	210
	Transduction: Cascades of Molecular Interactions	214
	Response: Cell Signaling and Cytoplasmatic Activity	218
	Apoptosis 223	210
C-II	12. THE CELL CICLE	
	Division 229	
I ne	Mitotic phase 230	
Regulation	of the Eukaryotic Cell Cycle 228	
13.	MEIOSIS AND SEXUAL LIFE CYCLES	
An	Introduction to Heredity 248	
The	Role of Meiosis in Sexual Life Cycles 250	
How	Meiosis Reduces Chromosome Number 253	
Origins	of Genetic Variation 258	
14.	MENDEL AND THE GENE IDEA	
Gregor	Mendel's Discoveries 262	
Inheritance	and the Laws of Probability 269	
Extending	Mendelian Genetics 271	
Mendelian	Inheritance in Humans 276	
15.	THE CHROMOSOMAL BASIS OF INHERITANCE	
Relating	Mendelism to Chromosomes 286	
-		

Sex		Linked Patterns 289			
Linked		Genes 292			
Errors		in Chromosomal Inheritance 297			
Exceptions		to Standard Chromosome Theory 300	to Standard Chromosome Theory 300		
16.		THE MOLECULAR BASIS OF INHERITANCE			
DNA		as the Genetic Material 305			
DNA		Replication and Repair 300			
Chromosom	nes	320			
17.		FROM GENE TO PROTEIN			
		The Connection between Genes and Proteins	325		
Transcriptio	on	331			
The		Processing of RNA 334			
The		Multiple Roles of RNA in the Cell 337			
Point		Mutations 344			
		Comparing Gene Expression in Bacteria and Eukarya	346		
	18.	REGULATION OF GENE EXPRESSION			
		Bacterial Gene Regulation 351			
		Eukaryotic Gene Expression 356			
		NonCoding RNAs 364			
		Differential Gene Expression 366			
		Genes Associated with Cancer 373			
		Cancer Development 376			
	19.	THE GENETICS OF VIRUSES			
	The	Genetics of Viruses 381			
	Viral	Reproduction 384			
	Virus	, Viroids and Prions 390			
20.		DNA TECHNOLOGY AND GENOMICS			
DNA		Cloning 396			
DNA		Analysis 405			
Plant		and Animal Cloning 412			
Practical		Applications of DNA Technology 416			
	21.	GENOMIC AND THEIR EVOLUTION			
Gen Bioi	Genor	me Sequencing 427			
	Bioinf	formatics 429			
Gen		me Characteristics 432			
Α		Genomics of Multicellular Eukaryotes 434			
	Altera	ation of Genome Structure 438			
		Genome Evolution	442		

LABORATORY EXERCISES - GENERAL BIOLOGY I – BIO 210

LABORATORY MANUAL: *BIOLOGY: Laboratory Manual*, by Darrell S. Vodopich, Randy Moore (Eight Edition) McGraw-Hill Higher Education, ISBN 978-0-07-299522-0

Week I	The Microscope: Basic Skills of Light Microscopy – Exercise 2	19-30
Week II	Measurements in Biology: The Metric System and Data Analysis - Exercise 1	11-18
Week III	Biologically Important Molecules: Carbohydr ates, Proteins, Lipids, Nucleic Acids – Exercise 6	55-66
Week IV	The Cell: Structure and Function – Exercise 4	31-46
Week V	Diffusion and Osmosis: Passive Movement of Molecules in Biological Systems – Exercise 9	89-102
Week VI	Photosynthesis: Pigment Separation, Starch Production and CO ₂ Uptake – Exercise 13	137-148
Week VII	Mitosis: Replication of Eukaryotic Cells – Exercise 14	149-157
Week VIII	Meiosis: Reduction Division and Gametogenesis – Eukaryotic Cells Exercise 15	159-168
Week IX, Week X	Genetics: The Principles of Mendel – Exercise 17 Handout in Probabilities	177-189
Week XI	Separating Organic Compounds – Exercise 7	67-76
Week XII, XIII	Molecular Biology and Biotechnology: DNA Isolation and Bacterial Transformation – Exercise 15	157-164

RECITATION EXERCISES - GENERAL BIOLOGY I – BIO 210

Week I	Lab report, scientific notation and metric system, scientific prefixes and suffixes
Week II	Atom structure and chemical bonds (exercises)
Week III	Proteins, Lipids, Nucleic Acids (reading and discussion?)
Week IV	Plasma membrane, structure, function, passive and active movement (computer simulations)
Week V	Metabolism, Photosynthesis, Cell respiration (review and discussion)
Week VI	The cell, structure, function - revision (models, images, computer simulations)
Week VII	Cell division, cancer (chapter reading and discussion)
Week VIII	Aneuploidy, pedigree (chapter reading and discussion)
Week IX	Mendelian genetics – exercises
Week X	Sex linked inheritance - exercises
Week XI	DNA Replication, synthesis of proteins (exercises)
Week XII	Virus, HIV (reading and discussion)
Week XIII	Stem cell research (reading)