Eugenio María de Hostos Community College Natural Sciences and Mathematics Departments Summer Institute 2010

Time	Monday	Tuesday	Wednesday	Thursday
9:30 - 12:30	MAT A-534	PHY A-534	MAT A-534	РНҮ А-534

Time	Monday	Tuesday	Wednesday	Thursday
1:30 - 4:30	MAT A-534	CHE A-534	MAT A-534	CHE A-534

Time	Monday	Tuesday	Wednesday	Thursday	Friday
11:00 - 1:30	ENGR 204 A-526	MAT A-526	ENGR 204 A-526	MAT A-526	ENGR 204 A-526

Time	Monday	Tuesday	Wednesday	Thursday	Friday
9:00	ENGR	ENGR	ENGR	ENGR	ENGR
-	103	103	103	103	103
11:00	C-556	C-556	C-556	C-556	C-556

Time	Monday	Tuesday	Wednesday	Thursday	Friday
9:30 - 12:00	CE 23100 A-535	MAT A-535	CE 23100 A-535	MAT A-535	CE 23100 A-535

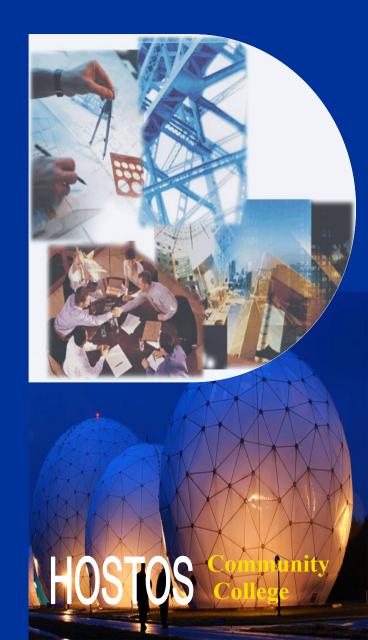
Sponsored by NSF Grant # 040614-0201 City College/Hostos Community College Bridges to Engineering Success

Engineering at Hostos Community College Joint Degree/Dual Admission A.S./B.E. Programs with The City College of New York

> Chemical Engineering Civil Engineering Electrical Engineering Mechanical Engineering

For more information about the engineering programs contact:

Ms. Karla Contreras Advising Coordinator Office of Faculty Development and Curriculum Phone: 718-518-6735 Email: kcontreras@hostos.cuny.edu


> Ms. Sarah Brennan, M.S. Assistant Director Center for Teaching and Learning Phone: 718-518-6609 Email: sbrennan@hostos.cuny.edu

Prof. Daniel Maysonet Coordinator of Engineering Program Chair of Mathematic Department

Dean Amanda Bernal-Carlo, Ph.D. – Intersession Director, Acting Associate Dean Faculty Development and Curriculum, & Director, Center for Teaching and Learning

> The Professor Magda Vasillov Center for Teaching and Learning Division of Academic Affairs

SUMMER INSTITUTE 2010

Eugenio María de Hostos Community College Mathematics and Natural Sciences Departments Summer Institute 2010

Bridge to Chemistry 210 & 220

Semester:	Summer Intersession 2010
	(June 1 to June 30)
Instructors:	Prof. Francisco Fernández
	(Sciences Dept.) and
	Prof. Dionicio Taveras (Math Dept.)
Class Hours:	1:30 pm – 4:30 pm
Class Room:	A-534
Class Days:	MAT- CHEM M/W
v	CHE 210-220 T / TH

Objectives:

On completing this course students should be able to start studying chemistry as part of the first college chemistry course (**Chemistry 210, Chemistry 220**)

Threshold Concepts and their Applications:

Math Threshold Concepts	Chemistry Application	Trigonometry
Basic mathematical Concepts: • Calculators • Unit conversions • Percent • Scientific notations	 Applications in Chemistry Stoichiometry Thermo chemistry Solutions, Percent composition, Percent yield Solubility, ionic equilibrium 	 Right Triangle Tr try Definition of Trigo Functions: sin(a), c tan(a); and their inv sin⁻¹(a), cos⁻¹(a), and Identities Linear Algebra
Other mathematical issues & Algebra: • Logarithms • Significant figures • First degree equations • Second and higher degree equations	 pH Equilibrium Thermodynamics Gases Chemical equations 	 Vectors and Vector Unit Vectors Products of vectors
 Data Processing: Functional relationships Graphs Problem Analysis 	 Gases Chemical equations Balancing Red-ox equations Hess Law Chemical Equilibrium Thermo chemistry Thermodynamics Applied Chemistry 	Calculus • Derivatives • Integrals

Bridge to Physics 210

Semester:	Summer Intersession 2010
	(June 1 to June 30)
Instructors:	Prof. Yoel Rodríguez (Sciences Dept.)
	and Prof. Ross Flek (Math Dept.)
Class Hours:	9:30 am – 12:30 pm
Class Room:	A-534
Class Days:	MAT-PHY M/W
U U	PHY 210 T / TH

Objectives:

On completing this course students should be able to start studying mechanics as part of the first college physics course (**Physics 210**)

Threshold Concepts and their Applications:

Math Threshold Concepts	Physics Application
 Trigonometry Right Triangle Trigonometry Definition of Trigonometric Functions: sin(a), cos(a), and tan(a); and their inverses sin⁻¹(a), cos⁻¹(a), and tan⁻¹(a)), Identities 	 Physics-related problems (Daily-life situations) Newton's Law of Motion (First Law, Second Law, and Third Law of motion)
 Linear Algebra Vectors and Vector Addition Unit Vectors Products of vectors 	 Physics-related problems (Daily-life situations) Motion along a straight line Motion in two or three dimensions Newton's Law of Motion (First Law, Second Law, and Third Law of motion) Work Right-Hand Rule (e.g. Torque)
Calculus • Derivatives • Integrals	 Motion along a straight line Motion in two or three dimensions Newton's Law of Motion (First Law, Second Law, and Third Law of motion) Work Right-Hand Rule (e.g. Torque)

Bridge to Engr 103

Semester:	Summer Intersession 2010		
	Bridge to Engr.103		
	(June 1 to June 29)		
Instructors:	Jiang Biao		
Class Hours:	9:00 am - 11:00 am		
Class Room:	C-556		
Class Days:	M / F		
Threshold Concepts and their Applications:			

- Coding
- Linear Algebra
- Numeric integration
- Complex numbers
- Statistics

Bridge to Engr. 204

Instructors:Akm Mahfuzur RahmanClass Hours:11:00 am - 1:30 pmClass Room:A-526Class Days:ENGR M/ W/ FMATT/ TH

Threshold Concepts and their Applications:

line li- n n)	Basic Concepts• Systems of Units• Charge and current• Voltage• Power and Energy• Circuits Ele- ments	 <u>Basic Laws:</u> Ohm's Laws Nodes, Branches, and Loops Kirchhoff's Laws Series Resistors and Voltage division Wye-Delta transformations 	Methods of AnalysisNodal Analysis with Voltage SourcesMesh analysis with Current SourcesNodal and Mesh Analysis by InspectionCircuit Analysis with PSpice
line li- n ,	<u>Circuits</u> <u>Theorems</u> • Linearity Property • Superposition • Source Trans- formation • Thevenin's Theorem • Norton's Theorem • Derivations of Thevenin's and Norton's Theorems	Operational Amplifiers• Operational Amplifiers• Ideal Op Amplifiers• Inverting Amplifier• Noninverting Amplifier• Summing Amplifier• Difference Amplifier• Cascaded Op Amp Circuits	Capacitors and Inductors Capacitors Series and Par- allel Capacitors Inductors Series and Par- allel Inductors Sinusoids/ Phasors Source Trans- formation / Equivalent Circuits