HOSTOS COMMYNITY COLLEGE DEPARTMENT OF MATHEMATICS

- MAT 160 PRE-CALCULUS
- CREDIT HOURS: 4.0
- EQUATED HOURS: 4.0
- CLASS HOURS: 4.5
- PREREQUISITE: MAT 030 or placement
- REQUIRED TEXTS: Dugopolski: <u>Pre-calculus</u>, 3nd Edition, Addison Wesley, 2005
- **DESCRIPTION:** This course provides essential concepts for the study of Calculus. Topics: Concepts in algebraic and transcendental (exponential logarithmic and trigonometric)functions; inverse functions, graphs of functions. Equations, inequalities, theory of equations and applications.

LEARNING OUTCOMES:

Students should understand the concepts of functions and be able to apply their comprehension to solve mathematical and application problems after they achieve proficiency in the following:

- Performing computations involving functions, inverse functions and relations.
- Sketching graphs of algebraic and transcendental functions using transformations.
- Using the graphs of algebraic functions to solve the corresponding equations and inequalities.
- Understanding trigonometric relationships and be able to derive trigonometric identities.
- Solving exponential, logarithmic and trigonometric equations.
- Solving application problems including exponential, logarithmic and trigonometric functions.
- **EXAMINATIONS**: A minimum of three partial tests and a comprehensive final examination.
- GRADES: $A, A^{-}, B^{+}, B, B^{-}, C^{+}, C, D, I, F.$

COURSE OUTLINE MAT 160 PRECALCULUS

I. RELATIONS AND FUNCTIONS	Sessions
1) Function Definition of function. Function notation, Review linear, quadratic, rational, radic absolute value. Domain and range in set and interval notations. Difference Quotie	2 al, ent.
2) Graph of Relation & Functions XY-Plane, Graph of linear, quadratic, radical, absolute value, step and piece-wise functions.Vertical line test.	2
3) Families of Function Graphing by transformation: Reflexions, Translations, Vertical, Horizontal. Symmetry respect to the x and y axis, emphasize odd & even functions.	1 netry with
4) Operation of Functions Emphasize composite functions & decompose a composite function. Addition, su Multiplication, Division.	1.5 btraction
5) Inverse Functions Horizontal line test, finding inverse functions. Composite function of inverses (f One to one functions.	1.5 [g(x)]=x)
6) Constructing Functions Review of variation. Application of functions: Physics, Economics, Geometry	1 7.
7) Quadratic Function, Inequalities and Equations.	2
Use the graph of $y=ax^2+bx+c$ to explain the solution of equation is the intersective with x-axis (y=0) and the solution of inequality is actually finding when the graph above (y>0) or below (y<0) x-axis. The extreme is the y coordinate of the vertex.	on point 1 lies
III. POLYNOMIAL AND RATIONAL FUNCTIONS	
1) Polynomial Functions Zeros of Polynomial, Theory of Equations, Emphasize application of Remainder Rational Zero theorem.	2.5 and
2) Graph of Polynomial Intercepts, symmetry, Asymptotes (vertical, & Rational Functions. horizontal, ob Use rough graph to solve Inequalities.	2.5 lique).
3) Rational Functions Synthetic Division and Asymptotes	1

1) Exponential Function Definition, Properties, Graphs.	1
2) Logarithmic Function Definition, Properties, Graphs. Emphasize for each exponential (logarithmic) expressio there exist equivalent logarithmic (exponential) expression.	2 m
3) Rules of Logarithm $log(a+b) \neq log(a) + log(b)$	1
4) Equations and Applications Solving Exponential and Logarithmic Equations. Application of exponential & logarith equations to solving, compound interest, growth and decay and other problems.	2 mic
V. Right Triangle Trigonometry & Eight Basic Identities	
1) Introduce six trigonometry identities by ratios by three sides of a right triangle.	1
 Measurements of Angles Conversion of angles measured in degrees and Radians. 	1
3) Definitions of Trig. Functions when angles are in standard position Complementary and co-terminal angles. Signs of Trig. functions in different quadrants. position. Values of Trig. functions of special angles. Reference angles $R(x)$. Trig $(x) = \pm$ Trig $R(x)$.	3
4) Graphs of Trig. Functions. Inverse Trig. Functions Emphasize sinx, cosx & tanx includes $y = A trig.(bx + c)$	2
5) Trigonometric Identities. Requires students to know how to derive identities by using: $\cos(x+y) = \cos x \cos y - \sin x \sin y$	2
6) More Identities, verifying identities and Trig. Equations Trigonometric Functions of Sums and Differences of Angles Solving First and Second Degree Trigonometric Equations Laws of Sine and Cosine- Application on Solving Triangles Double Angle and Half Angle Formulas	4